
Journal of Statistical Physics, Vol. 73, Nos. 5/6, 1993 

Exact Solution of the Totally Asymmetric 
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The microscopic structure of macroscopic shocks in the one-dimensional, totally 
asymmetric simple exclusion process is obtained exactly from the complete 
solution of the stationary state of a model system containing two types 
of particles--"first" and "second" class. This nonequilibrium steady state 
factorizes about any second-class particle, which implies factorization in the 
one-component system about the (random) shock position. It also exhibits 
several other interesting features, including long-range correlations in the limit 
of zero density of the second-class particles. The solution also shows that a 
finite number of second-class particles in a uniform background of first-class 
particles form a weakly bound state. 

KEY WORDS: Asymmetric simple exclusion process; shock profiles; second- 
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1. I N T R O D U C T I O N  

Much a t ten t ion  has focused recently on nonequi l ib r ium model  systems 
consist ing of particles on a lattice, evolving microscopically under  conser- 
vative dynamical  rules, and described on the macroscopic level by a 
cont inuous  density field which satisfies some equat ions of hydrodynamic  
type. 11'2) Of part icular  interest are cases in which the macroscopic equa- 
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tions produce shocks. Such models usually have microscopic transition 
rates which do not satisfy any detailed balance condition; that is, the 
dynamics is not reversible with respect to any measure. In this paper we 
provide an analytic description of the shock structure of one such model, 
the much studied one-dimensional, totally asymmetric simple exclusion 
process, whose macroscopic behavior is described by the Burgers equation, 
by obtaining an exact solution for a related model system. Before 
explaining these models in detail we describe briefly their context within 
nonequilibrium statistical mechanics. 

For systems with dynamics not satisfying detailed balance, there is no 
general formula of the Gibbs type for the steady states. As a result, we do 
not in general have even qualitative information about the nature of these 
states or their dependence on the parameters entering the dynamics. 
Almost all of our information about such driven diffusive systems comes 
from computer simulations or from some approximate calculations using 
renormalization group ideas or field-theoretic methods. (3) These indicate 
the existence of generic long-range correlations in dimensions greater than 
one, ~3-5) even when the dynamics is short ranged. This situation is in strong 
contrast to the behavior when the dynamics satisfies detailed balance; in 
this case the steady states are essentially Gibbs states for some short- 
ranged Hamiltonian and therefore have exponential decay of correlations 
in the weak-coupling or high-temperature regime. 

One of the simplest models of driven diffusive systems is the asym- 
metric simple exclusion process, ~6) in which particles on the one-dimensional 
lattice 7/attempt at random times to jump to an adjacent site, choosing the 
site to their right with some fixed probability p and that to their left with 
probability 1 -  p, with the attempt succeeding if the target site is not 
already occupied. Here the Bernoulli measure v o, in which each lattice site 
is occupied independently with probability p (0 ~< p ~< 1), is a (translation- 
invariant) stationary state for any value of p; in this state there is a current 
J =  (2p- 1 ) p ( 1 -  p). The dynamics satisfies detailed balance with respect 
to vp if and only if p = 1/2. (In fact, the model may be formulated in any 
dimension and always has product measures as invariant states; in this 
regard it is not typical of driven diffusive systems.) 

For the asymmetric simple exclusion process the mass density u(x, t) 
on the macroscopic level--which is an appropriately scaled continuum 
limit of the particle density in the microscopic model--is described ~7 9) by 
the inviscid Burgers equation 

ut + ( 2 p -  1)(u[1 - u])x = 0 (1.1) 

It is well known that solutions of this equation can exhibit shocks (for 
p C  1/2). In the simplest such situation the macroscopic density u(x, t) 
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satisfies u(x,t)=u+ for X>Xo(t) and u ( x , t ) - - u  for X<Xo(t), where 
u+ > u  (when p >  1/2) and the shock position Xo(t) moves with the 
constant velocity (2p - 1)(1 - u+ - u_ ). 

An important question to ask of any model which produces shocks is 
whether the sharpness of the density transition persists on the microscopic 
scale. In the asymmetric simple exclusion process this problem has been 
extensively studied both theoretically and numerically. (1~ In either case 
one must first locate the shock--that is, define precisely its position--on 
the microscopic level. This may be done by introducing into the system a 
special second-class particle, (~2) which evolves by a modified dynamical rule 
chosen to keep the second-class particle near the shock; the position of 
this particle may then conveniently be taken as the definition of the 
(microscopic) shock location. 

With this definition of shock location it has been established ~s~ (see 
also refs. 11, 13, and 14 for related results) that the shock remains sharp 
on the microscopic level--i.e., that the (ensemble-averaged) particle density 
as viewed from the second-class particle has a time-invariant distribution 
which approaches the densities p + = u+ at _+ oo. Computer studies of this 
shock profile in the case p =  1 are described in ref. 16 (see also ref. 17). 
These indicate that in general the density approaches its asymptotic value 
exponentially fast. In the limiting case p+ = p _  =p ,  however, when the 
invariant measure on the original particles (now called first-class particles) 
is Bernoulli and the density in a fixed frame is thus constant and equal to 
p, the choice to view the system from the second-class particle produces a 
"shock" profile for which the approach to p is governed by a power law. 

In this paper (see also ref. 18) we study these questions for the totally 
asymmetric model (TASEP) in which all jumps are to the right, that is, in 
which p = 1; for this system we derive exact formulas for the shock density 
profiles discussed above. (In the conclusion we comment on extensions 
to more general models.) Our method is to study a model containing 
arbitrary numbers of first- and second-class particles, (~4) which we call the 
two-species TASEP. In particular, we first obtain an explicit expression for 
the invariant measure of the two-species TASEP on a ring of N sites. This 
solution, which is based on an earlier exact solution ~19) (see also ref. 20) 
derived for a finite system with open boundaries and only first-class 
particles, expresses the probability of any configuration as the trace of 
a product of matrices or operators. 

From this solution on the ring we then study shock profiles and other 
phenomena by taking the infinite-volume limit N--* oo in various ensem- 
bles. We consider three main cases. The shock profile between distinct den- 
sities p + and p_ is studied--via an artifice(~4~through the infinite-volume 
limit of systems with fixed, nonzero densities of both first- and second-class 
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particles. On the other hand, the "shock" profile for the constant-density 
case is obtained from the infinite-volume limit of systems containing one 
second-class particle and a fixed density p of first-class particles. Finally, we 
study also a pair of second-class particles in the presence of a finite density 
of first-class particles, and find that they form a bound state. 

In the next section we describe more explicitly the two-species TASEP 
and the method we use to obtain shock profiles on the infinite line from the 
exact solution of the model on the ring. We derive there a simple symmetry 
property of the shock profiles and discuss as well several general properties 
of the invariant measures. We also describe the organization of the remain- 
der of the paper, where the exact solution is obtained and its consequences 
in the infinite-volume limit are explored. 

2. DESCRIPT ION OF THE M O D E L  A N D  
S U M M A R Y  OF RESULTS 

We begin by describing the two-species TASEP on a ring of N lattice 
sites, with K1 first-class particles, K2 second-class particles, and K0= 
N - K ~ -  K2 empty sites. No two particles are allowed to occupy the same 
site, so that we may specify a configuration of the system by an N-tupte 
(Z'a, "~2 .. . . .  27N) , where *i = 1 if there is a first-class particle at site i, ,i--- 2 if 
there is a second-class particle at site i, and *i = 0 if site i is empty. We treat 
the site index as cyclic, so that rN+~=*~. 

The system evolves under a stochastic dynamical rule. During a time 
interval dt each adjacent pair of sites in the system--say sites i and i + 1 -  
has probability dt of being selected for a possible exchange of their current 
states. The exchange takes place if (a)site i is occupied by a first-class 
particle and site i + 1 is either occupied by a second-class particle or is 
empty, or (b) site i is occupied by a second-class particle and site i +  1 is 
empty; that is, the possible transitions are 

1 0 - , 0 1 ,  1 2 ~ 2 1 ,  and 20--*02 (2.1) 

Note that the number of particles of each type is conserved. It is easy to 
see that any configuration can evolve into any other, so that the system is 
ergodic and there is a unique stationary probability measure. 

In Section 3 we derive an explicit expression for the probability of any 
configuration in this invariant measure; the remainder of the paper 
explores the implications of this representation for the behavior of the 
system in the infinite-volume limit. Although it is possible to carry out the 
analysis using the canonical ensembles introduced above, it simplifies 
the computations to introduce superpositions of these--that is, grand 
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canonical ensembles--in which the populations of particles can fluctuate, 
adjusting the fugacities of the first- and second-class particles and of the 
holes to produce some fixed densities of the various species. 

In Section 4 we consider a system which contains a single second-class 
particle and a fixed density p of first-class particles: K2 = 1, ~KI ) /N= p; 
the quantity which has a nontrivial infinite-volume limit is the density of 
first-class particles as seen from the second-class particle. In this relative 
frame the location of the second-class particle is taken to be i =  0 and we 
let di denote the average density of first-class particles at sites i r  0. The 
average drift velocity of the second-class particle in a fixed frame is 1 - 2p, 
as we show at the end of this section (see also ref. 15). Because this drift 
velocity decreases with p, the effect of density fluctuations is that the 
second-class particle is attracted toward regions in which the local density 
has a positive gradient. Thus the density profile has di> p for i >  0 and 
di<p for i<0 .  We find that d~ converges monotonically to p as [i] 
increases and, as indicated in the introduction, [di-p] ~-Cli1-1/2 for 
Ii[>> 1. 

We could, of course, take a infinite-volume limit with any constant 
number of second-class particles. In Section 5 we consider the case/s = 2, 
{K1 ) /N= p. Somewhat surprisingly, the two second-class particles form a 
bound state, with a power-law decay r -3 /2  of the probability of finding 
them a distance r apart; the distance between them thus has infinite 
expectation. 

A time-invariant state in the ring geometry cannot support two 
regions of distinct densities of first-class particles. It is possible, however, to 
compute the density profile in the infinite system for the shock between 
asymptotic densities p+ and p_ (with p+ > p  ) by taking the infinite- 
volume limit from the ring geometry at fixed densities p~ = p_ of first-class 
particles and P2 = P + - - P -  of second-class particles. Again we suppose that 
we look at the system relative to one second-class particle, located at the 
origin; let us denote by 6i the average density of first-class particles at site 
i, for i < 0, and the average density of all particles--both first and second 
class--at site i, for i>0 .  Because the second-class particles ahead of the 
distinguished one behave toward it as if they were first-class particles, it is 
easy to see that ~ is exactly the profile we seek. (This is a special case of 
a method of ref. 14 for identifying a shock profile in a system of first-class 
particles from the knowledge of a stationary measure for a system with 
uniform densities of first- and second-class particles, viewed from a 
second-class particle. The general method works for any asymmetry in the 
ASEP--that  is, for any value of p, not just p = 1.) The calculations for this 
situation are carried out in Section 6, and the shock profile is discussed in 
Section 7. We find that 6~ converges exponentially to p+ as [i] ~ ___~ and 
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that the characteristic length of this decay diverges as (p+--10 ) - 2  when 
( p + - p _ )  "~ 0. 

There are several simple general properties of the invariant states 
of the two-species model. One of these, derived immediately below, is a 
symmetry property--symmetry around a second-class particle, in the 
two-component system, or symmetry of the shock, in the one-component 
system: 

(~ i+6i -=p_ ~-p+ (2.2) 

Another, derived at the end of Section 3 as a simple consequence of our 
representation of the invariant measure, is that in the infinite system a 
second-class particle has the effect of decoupling the regions on each side 
of it; thus if we condition (as in the discussions above) on the presence of 
such a particle at the origin and let f(T) and g(~) be functions which 
depend only on the occupation variables z~ for i < 0 and i > 0, respectively, 
then 

( fglTo=27 = ( f l z o = 2 ) ( g l T o = 2 )  (2.3) 

(A similar independence holds for finite systems in the grand canonical 
ensemble for expectations conditioned on the presence of at least two 
second-class particles at specified sites.) A third property depends for its 
derivation on the somewhat elaborate computations from the explicit for- 
mula for the invariant measure which will be given later (see Sections 6 and 
7): if we again condition on the presence of a second-class particle at the 
origin in the infinite system with densities Pl and p 2 > 0  of first- and 
second-class particles, then the distributions of first-class particles to the 
right of the origin and of holes to the left of the origin are Bernoulli, with 
densities Pl and 1 - Pl - P2, respectively. 

The derivation of the symmetry (2.2) is based on the fact (6) that the 
invariant measure for the TASEP at density p with only first-class particles 
is Bernoulli. Let us introduce new occupation variables ~i and ~i taking 
values 0 and 1, where ~i = 1 (respectively ~ = 1) if and only if there is a 
first-class (respectively second-class) particle at site i. Now the second-class 
particles appear to the first-class particles to be indistinguishable from 
holes; thus the first-class particles considered separately have a Bernoulli 
distribution at density p l. On the other hand, we may ignore the distinc- 
tion between the two types of particle as well as interchanges (1 2 ~ 2 1) 
between them; these new particles themselves form a TASEP system which 
will have an invariant measure which is Bernoulli with density Px +P2. 
Thus for all j r k, 

(~j~k)=p 2 and ( (~ jq -~ j ) (~k+~k) )=(p l -bp2 )  2 (2.4) 
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If we write 

then (2.4) implies that 

P21(r + P2-' (~j(r + ~k)) = 2p~ + P2 (2.5) 

Since p ~ ( ~ j ~ )  is the probability of a first-class particle at site j, 
conditioned on there being a second-class particle at site k, and 
P21(ffj(gk + ~k)) is the probability of a first- or second-class particle at site 
k, conditioned on there being a second-class particle at site j, for j < k this 
is just (2.2) with i = k - j .  

The fact that we can view the two-species TASEP as a one-species 
TASEP in two different ways also yields a simple argument that in a 
uniform one-component TASEP at density p the velocity of a single 
second-class particle is 1 -  2p. For, if a small density dp of second-class 
particles is added to such a system, then the new system may be regarded 
as a one-component TASEP at density p + dp and hence the current must 
increase from p(1 - p )  to (p + dp)(1 - p -  dp). On the other hand, since the 
first-class particles alone form a TASEP, they still contribute a current 
p ( 1 - p ) ,  and the additional current due to the second-class particles is 
(1-2p)clp.  

3. T H E  S T A T I O N A R Y  M E A S U R E  

Our goal in this section is to derive an explicit formula for the 
probabilities of all configurations, in the stationary measure, for a system 
of K1 first-class and /s second-class particles on a ring of N sites. In an 
earlier study ~9) of a system with open boundaries and with only first-class 
particles such formulas were given in terms of certain matrix products. 
Here we extend this method to the case of periodic boundary conditions 
for a system with an arbitrary number of second-class particles. 

If the system contains no second-class particles, then the stationary 
measure is well known: all configurations are equally likely. For the rest of 
the section we will therefore assume that the system contains at least one 
second-class particle. We will show that the stationary measure may be 
constructed with the aid of two matrices or operators D and E which 
satisfy ~a9) 

D E = D +  E (3.1) 

If we define 

A = D E -  ED (3.2) 
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then it follows from (3.1) that A is a projection (A 2= A) and satisfies 

DA = A and A E  = A (3.3) 

We suppose also that trace A < oe. (An example of such matrices will be 
given below.) Then we claim that for fixed K =  (Ko, K1,/s the probability 
in the stationary measure of the configuration ~ is given, up to an overall 
normalizing factor dependent on K, by the weight w~:(r) which is defined 
by 

WK(Zl ,..., ~Jv) -- t race[X1-. .  XN] (3.4) 

where Xi = E if ri = 0, X~ = D if ri = 1, and Xi = A if zi--2.  Note that the 
invariance of the system under rotation of the ring of sites, that is, under 
cyclic permutation of the % is preserved by the corresponding invariance 
of the trace. 

We next write down the stationarity conditions on the measure which 
follow from the dynamics described in Section 2. In doing so we will use 
the following standard notation: if ~ = (~1 ..... ~u) is a system configuration, 
then c ~ denotes the configuration obtained from ~ by interchanging ~ and 
rj. Now consider the possible change in the probability of a specific con- 
figuration ~ during some time interval dt. For each pair of indices i, i + 1 
with ~ + 1  of the form 1 0, 1 2, or 2 0 there is a probability dt that the 
states of these sites will be interchanged during the time interval; on the 
other hand, for each such pair i, i +  1 with ~i~+1 of the form 0 1, 2 1, or 
0 2 there is a probability dt that an exchange will occur in the configuration 
~,~+ 1, leading to the configuration ~. Thus the condition for stationarity of 
the measure with weights wK is that for all ~, 

E WK(T')= E WK('C i'i+l ) ( 3 . 5 )  

{il~i~:i+ 1 - 10, 12, or 20} {ilzi~i+ 1 = 0 1 ,  21, or 02} 

We now verify that (3.4) provides the weights of a stationary measure, 
that is, according to (3.5), that for all r, 

t r a c e [ X 1 - . .  Jf  iXi  + 1 X N ]  
{ilT:iri+ 1 - 10, 12, o r20}  

= ~ t r a c e [ X 1 - . -  Xi+ l flfi . . .  X N ]  (3.6) 
{il':izi+l=O1,21, or02} 

Let us write X1-..  XN, possibly after a cyclic permutation which will not 
affect the trace, in terms of blocks of consecutive identical matrices: 

X l  . . .  X" u ~__ y ~ l  . , .  y~m 

where each Yj is D, A, or E, and Yj:# Yj+l, Y m r  Yl" NOW in each term 
on the left-hand side of (3.6) we use the algebraic relations (3.1) and (3.3) 
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to replace the product XiJ(~+~ by a sum of two operators or a single 
operator-- that  is, D E  is replaced by D + E, while D A  and A E  are replaced 
by A. The net effect of these replacements is that each boundary D E ,  D A ,  

or A E  between blocks in the product gives rise to one or two terms: 

�9 . .  D E . . .  ~ trace [ . . . / ) E .  -. ] + trace [--.  Dr ' .  �9 - ] 

�9 . . D A . . .  --. t r a ce [ . . - / )A . .  ,] (3.7) 

�9 . . A E . . .  ~ t race[ . . .  A/~. . . ]  

where the caret denotes an omitted factor. Since each D block is followed 
by an E or an A, and each E block is preceded by a D or an A, each D 
block (respectively E block) gives rise to a term in which the rightmost 
(respectivelY leftmost) factor in the block has disappeared; notice that in 
the case of a D E  boundary we get a term for each block. Thus we find 

t r ace [Xl . . .  X i X i  + i . . . X N ]  
{il~.iri+l = 10, 12, o r 2 0 }  

= 2 trace[Y~l. . ,  y~j 1.. .  ykmm ] (3.8) 
{J IYj=D,E}  

Similarly, each block boundary X ~ X ~ + I  of the form E D ,  A D ,  or E A  con- 
tributes a term to the right-hand side of (3.6) in which J ( i X i +  1 has become 
Xi+ ~X~; if we make the same replacements as above for the latter product, 
then the net effect on block boundaries is 

�9 . . E D . . .  ~ . . . D E . . .  ~ t r a c e [ . , . E D . . . ]  + t r a c e [ . . - / ) D . . . ]  

�9 . . A D . . .  ~ . . . D A  . . .  ~ t r a c e [ . . . A D . . . ]  (3.9) 

- . .  E A  . . .  ~ . . .  A E . . .  --, t r ace [ - . . / )A . - - ]  

Now the D blocks lose their leftmost and the E blocks their rightmost 
factors, and we find that 

t race[X1-. .  X i +  l X ~ . . .  X N ]  
{ilziri+ 1 = 0 1 ,  21, o r 0 2 }  

= ~ trace[ y~  .. .  y~j-1 ... ykmm ] (3.10) 
{/I Y:- -D,E}  

Comparison of (3.8) and (3.10) verifies (3.6). 
We turn finally to the question of existence of matrices D and E 

satisfying (3.1). If we write D = I +  d and E = I + e ,  then the algebra (3.1) 
satisfied by D and E reduces to de  = L so that if D and E are finite dimen- 
sional, then d =  e - l ,  D and E commute, and A = 0. This trivial solution 
may in fact be regarded as giving the correct weights for the system with 
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no second-class particles. To treat second-class particles, however, we must 
take D and E to be infinite dimensional; a simple solution (19) of de = I with 
noncommuting d, e takes e to be the right shift operator on semi-infinite 
vectors and d to be its adjoint, leading to 

( i ~ 1 7 6  1 0 ( i~176176 0 0 D =  0 1 1 , E -  1 1 0 (3.11) 

0 0 1 0 1 1 
. ' .  . ' . .  ' .  

A is then the projection on the first component of the vector and has 
trace 1: 

(i000) 000 
A = L 1 } ( I I =  0 0 0 (3.12) 

0 0 0 

where (11 = [1,0,0,. . .] .  Of course, our results are independent of any 
explicit representation of the matrices, depending only on (3.1), (3.2), and 
the fact that A has finite trace. For notational convenience in the balance 
of the paper, however, we will assume that A is a one-dimensional 
projector and write A = I1 }(1[ as in (3.12). We will also use the specific 
representation (3.11), (3.12) in the Appendix. 

There is, however, one important property of the stationary state 
which is easy to see in this representation. Let us consider configurations 
(Zl ,.--, ZN) which have second-class particles at two specified sites, say j and 
N. Then the weights of such configurations factorize: 

WK(T 1 ..... r N ) = ( l l X I . . . X j _ I I 1 ) ( l l X j + I . . . X N _ l l l  ) (3.13) 

when ~j = zu = 2. In later sections we will consider the infinite-volume limit 
of these systems, conditioning on the presence of a second-class particle at 
site N, or equivalently at the origin in the limit. Because of the factorization 
(3.13), there is in the limit independence between the portions of the system 
to the left and right of the origin, as expressed by (2.3). 

In the remainder of the paper we will consider several different infinite- 
volume limits of the system described here, in which we either fix a finite 
number of second-class particles or consider a finite density of second-class 
particles. In each case we will concentrate on calculating the limiting values 
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of the particle density profiles; however, it is easy to extend the computa- 
tions to show that the (weak) limit of the measure defined here--that is, 
the limit of all correlation functions--exists in each case. 

4. THE PROFILE SEEN FROM A SINGLE 
S E C O N D - C L A S S  PARTICLE 

In this section we consider systems which contain a single second-class 
particle, and ultimately derive an exact expression for the stationary 
density profile of first-class particles, seen from the second-class particle, in 
an infinite system in which the first-class particles have average density p. 
In the process we also find formulas for this profile in the canonical and 
grand canonical ensembles for finite systems. 

We begin by considering a system of N sites, with a single second-class 
particle (K 2 = 1 ) and K~ = K first-class particles. Since the cyclic symmetry 
of the model implies that the weights of configurations in the steady state 
depend only on the positions of the first-class particles relative to the 
second-class particle, we may choose a frame in which the second-class par- 
ticle is always at position N. Equation (3.4), with the notation A = ]1 ~{lJ, 
then becomes 

N--I  
wx(~,Vz,. . . , ;N , , 2 ) = ~ l J  I ]  Xi [ l~  (4.1) 

i=1  

where Xi--D if ~i = 1 and X~--E if vi--0. From this one can in principle 
calculate the conditional density {~] "c N ~---2~K at any site i:A N in the 
system--that is, the probability that site i is occupied--by 

~'~iJ'fU=2)K-- ~'c~176 T'2''''''~x-l'2)'Gi (4.2) 
'~configurations WK(TI, "~2,'", TN l, 2) 

where the sums run over all the configurations with K first-class particles 
and Ko = N -  1 -- K empty sites. 

The quantities (z~[ ZN = 2 ) x  can in fact be computed from (4.2) (see 
Remark 4.1 at the end of this section), but the constraint of a fixed number 
of first-class particles makes the calculation rather complicated. It is more 
convenient to work in the grand canonical ensemble, in which the number 
of first-class particles can fluctuate. For this purpose we introduce two 
parameters which play the role of fugacities: x for first-class particles and 
z for empty sites. (It would be sufficient to introduce only one of these, 
since the total number of available sites is fixed at N -  1, but the use of 
both makes the symmetry between first-class particles and holes more 
apparent). 
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In the grand canonical ensemble the unnormalized weight 
Wu(v~, %,..., rN_~, 2) of the configuration (~1 ..... "CN 1, 2) with K1 first- 
class and Ko = N -  K1 - 1 holes is given by 

WN(Zl, "C2,... , "ON_ 1, 2)=x~:lzX~ z2,..., rN ,, 2) 
N--1 

= ( I I  ]-[ [ x D r , + z E ( 1 - r i ) ] l l >  (4.3) 
i ~ l  

The density d~(N) at site i r  N is then 

2..v N t  1,"C2 ..... ~N 1,2) 
(4.4) 

where the sums, no longer restricted to fixed Ko and K1, run over rj = 0, l 
for j = 1 ..... N -  1. Introducing 

C = xD + zE (4.5) 

we see that these densities are easily expressed in terms of the matrix C: 

<11 C i 1 D C N - i  i l l)  
di(N)-=x <ll C N-I  I1> (4.6) 

From (3.2) and (3.3) it follows that D I l > = l l > ,  < l l E = < l t ,  and 
D r - C D = z  I i ) < l l ,  so that 

<1[ C N-2 I1> 
dl(N) = 1 - z  <11 C u-1  I1> (4.7) 

<11 c '-~ 11><11 c 'v-'-211> 
d i ( N ) - d ' + ~ ( N ) = x z  < l I C  u ~(1> (4.8) 

and 
<IL C n - 2  [1> 

d u _ , ( N ) = x  <II C u - '  [1> (4.9) 

Thus the computation of the di(N ) is reduced to the evaluation of the 
matrix elements <1[ Cnl l  >. These are calculated in the Appendix, both 
exactly [see (A.5)], 

( 1 ] C n [ l > =  ~ xPz n p 1 ( n ; 1 ) ( ; )  (4.10) 
p=O p + l  

and in the large-n limit [see (A.6)], 

<11 c ~ I1> --- 3 
2 ~ n3/2(xz) 3/4 

Note that these results are symmetric in x and z. 

(4.11) 
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As always in the grand canonical ensemble approach, one must choose 
the values of the fugacities x and z in order to fix the density of the 
first-class particles to be p. It follows from (4.3) and (4.6) that the average 
number ~K1) of first-class particles in a system of N sites (including the 
second-class particle, i.e., with N - 1  sites available for the first-class 
particles) is 

d C N -  1 (K1) = x  ~xxlOg(ll t l )  

Then for large N, from (4.11), 

{K1) -~N 

(4.12) 

x ~ + x  ~ (4.13) 

so that, in the infinite-volume limit, a density p of first-class particles in the 
system is obtained when x and z satisfy 

, /;  
x/~ + x / ~ -  p (4.14) 

Note that x and z are determined only up to an overall factor. Note 
also that the fluctuations in the density go to zero in this limit: from 
(K~)  - (K1)2 = x(d/dx)(K1 ) we have that for large N, 

/(@)2--(  ~ ~---~))2) 1/2 '~ 1 (4,15) 

so that the results of the canonical and grand canonical ensembles agree in 
the large-N limit. 

We now turn to the evaluation of the infinite-volume limit of 
the profile. Let us define, for all i>0 ,  di=limN~oodi(N) and d_i=  
limu~oodu_i(N ). We may use the asymptotic formula (4.11) for 
~IF C n 11) to evaluate the N--* oo limits of (4.9) and (4.8): 

_ x _ p 2  (4 .16)  4--1 (%~ q_ N~)2 

and for all i>0 ,  from the exact expression (4.10) for the matrix elements 
of C, 

d i 1 - d  ,=xz%11C i-1 [1) (x /~+x/~)  -2'-= 

= p ~ _ _ o p ~ ( ~ ) ( i  ; i - 1  1 1) (1 - p)2i-2pp2p+2 (4.17) 
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These formulas determine the profile to the left of the second-class particle 
in the infinite-volume limit: for i >  0, 

i~l n~l 1//?/\//F/--1)t]1_1\/\ P p)2n 2p +2 (4.18) d i = P 2 + . = l  p~O---5-7[P j | =  (1-- p2p 

Similarly, the N ~  oo limits of (4.7) and (4.8) determine the profile to the 
right of the second-class particle: 

Z 
d l = l  (%~ ..}_ %/7) 2 

and for i>0 ,  

Then 

- 2p __p2 (4 .19)  

di-di+l=XZ(l[ C i- '  I I > ( x / x + x / 7 )  2 i -2=d_ ,  1-d_i  (4.20) 

di = 2 p - , o  2 i~.l n l 1 / n \ / n - - l )  p2p+2 

For example, considering (4.18) and (4.21) for i = 2  and 3 yields 

d 2=2p 2 - 2 p  3+p4, 

d2 = 2p - 2p 2 + 2p 3 - p4, 

(4.21) 

d_3 = 3p 2 - 6p 3 + 9p 4 -  6p 5 + 2p 6 (4.22) 

d 3 = 2p - 3p 2 + 6p 3 - 9p 4 + 6p s - 2p 6 

(4.23) 

and so on. 
With the aid of the formula [see (A.9)] 

1 (4.24) (11C i - I  [ 1 ) ( x / x +  x//~)-2/+2- p ( l _ p )  
i=1 

we see that 

lim d ~=d_l+xz L ( l l  C ~ - 1 1 1 ) ( x / ~ + x / 7 ) - 2 i - 2 = p  (4.25) 
i~oo i=1 

This is of course expected, since at large distance we should recover the 
uniform density p. Similarly, l imi+~ dr= p. We may also calculate the 
approach to this limiting density: 

d_i_l-d_i~-  - (4.26) 2 x/-~(w/-s + xSzz)(xz) 3/4 i3/2 i3/2 
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for large i, which implies that 

il/-- 5 (4.27) 

We see that the profile decays as the square root of the distance; the mean 
field theory (16) predicts an exponent 1. 

Note that from (4.18) and (4.21) we recover that fact that 
d i + d i = 2  p for all i, as already known from (2.2). 

R e m a r k  4.1. The results obtained within the grand canonical 
ensemble can be recovered from a direct calculation in the canonical 
ensemble with K first-class particles, that is, from (4.2). For this purpose we 
consider the denominator ZN(K) of (4.2): 

ZN(K) ~ ~ WK(rl, 272,'", ~'N i, 2) (4.28) 
configurations 

where the sum is restricted to the configurations with one second-class 
particle on site N and K first-class particles distributed on the remaining 
N -  1 sites. If we multiply ZN(K ) by XKZ N- 1 ~c and sum over K, we obtain 
[see (4.3)] the grand canonical partition function: 

N--1 
XXZ N - '  KZN(K)= ( 1 1 C  N 1 t l )  (4.29) 

K=O 

If we now compare the coefficients of x and z in (4.10) and (4.29), we see 
that 

1 X N -  ) (4.30) Z N ( K ) = ~ - T ( K )  ( K 1 

We can then make use of the commutation relations and some algebra to 
find formulas for the average occupations in this ensemble. For example, 

ZN , (K-  1) K(K+ 1) 
( T N _ I )  K --  (4.3l) 

ZN(K) N ( N -  1) 

Z N _ I ( K - -  l ) - [ -ZN_2(K-  1) 

ZN(K) 

K(K + I ) K(K + I )(N-- K) (N-  K - 1 )  
- N(W-- 1~) + N ( N -  1) 2 ( N -  2) (4.32) 

and so on. In the limit K,N--* ~,  with K/N~p,  we find that ( r X- i ) K  
converges to d_i; for example, (4.31) and (4.32) recover (4.16) and (4.22). 
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5. THE B O U N D  STATE BETWEEN T W O  
S E C O N D - C L A S S  PARTICLES 

In this section we consider the case of two second-class particles in a 
system of first-class particles at density p. We will show that in the infinite- 
volume limit the two second-class particles form a bound state, and that 
the probability of finding them a distance r apart has power-law behavior, 
decaying a s  r - 3 / 2  for large r. 

From our formula (3.4) for the weights wk as traces we know that in 
the canonical ensemble, with two second-class particles and a fixed number 
K=K1 of first-class particles, the weight for the configuration with the 
second-class particles r units apart [-with 1 ~<r~< ( N - 1 ) / 2 J - - s a y  at posi- 
tions N and r--is easily computable if we specify the occupation variables 
for the other sites to be ri = 0, 1. This weight (if we take N odd to simplify 
counting) is given by 

r - - I  N - - 1  

WK(~I,.. . ,~r_I,2,~r+I,.. . ,~N 1 , 2 ) = ( 1 [  1--[ X i l l } ( l l  I-I Xi[1} (5.1)  
i = l  i - - r + l  

where Xi = D if r~ = 1 and X~ = E if r i = 0. As in the previous section, it is 
convenient to introduce the grand canonical ensemble with fugacities x for 
first-class particles and z for holes. Then from (5.1) the probability pN(r) 
of finding the two second-class particles a distance r apart is 

pN(r) - - - ( l l  C r-~ I 1 ) ( l l  c N-r  ~11} 

( N  --  1 ) /2 7 --  1 

x ~ (11 C "-1 [1)(1[ C N " - '  I1)J  (5.2) 
s = l  

where C = xD + zE as above. In the infinite-volume limit we must again 
choose x and z to satisfy (4.14) to ensure that the density of first-class 
particles is p; then the probability p ~ ( r ) =  limN~ o0 PN(r) that the particles 
are a distance r apart is 

]' poo(r)=(llCr-lll}(xfx+x/z) 2 ( r - - l )  ( l l C ,  i 1 ) ( , ~ + x / ~  ) 2s 
s 

(5.3) 

( 2 )  = p ( 1 - p )  2 P2P( 1-p)2r -2p-2  1 r - 1  (5.4) 
p=O p + l  p 

For small r we may use (5.4) to find po~(r) explicitly; for example, 
p ~ ( 1 ) = p ( 1 - p )  and p ~ ( 2 ) = p ( 1 - p ) [ p 2 +  ( l - p ) 2 ] .  For large r we may 
either estimate p~(r)  directly from (5.4) or use (5.3) together with the 
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asymptotic results (4.24) and (4.11) for the matrix elements of C; in either 
case, we find 

1 1 
poo(r) - 2[np(1 - -p)]  1/2 r3/2 (5.5) 

Thus the two second-class particles form a rather unusual bound state: the 
decay of p~(r) is a power law and the average distance between the two 
second-class particles is infinite. 

It is easy to extend this analysis to a finite system with any fixed 
number m of second-class particles. We find that in the limit N-+ oo the 
m particles form a bound state in which the probability for relative 
distances ri between the ith and the ( i+  1)th particles is m-1 l-Ii= 1 P~(ri). 
This factorization is an example of the decoupling of the system across 
second-class particles discussed at the end of Section 3. 

Remark 5.1. All these results can be easily recovered with the 
canonical ensemble. Here 

r - -1  

p u ( r ) =  ~ Zr(k)Z N r (K-k )  
k = 0  

- (N  1)/2 S--I ] 1 

• ~ ~ Z,(q) ZN_s(K-- q) (5.6) 
- s = l  q ~ 0  

where gN(k ) is given by (4.30). Now one can show that if N, K ~  ~ with 
K / N ~  p (and r and k are fixed), 

Z N - r ( K -  k)/Zu(X) ~- p2~(1 - p)2(~- k) 

so that (5.6) becomes 

r - - I  
p ~ ( r ) =  ~ Zr(k) p2k(1-p) 2(" k-l) 

k = 0  

• ~ Zs(q) pZq(1-p) 2~'-q-1) (5.7) 
s = l  q=O 

The denominator in (5.7) is, from (4.29) and (4.24), 

(11C N - I  I1 ) (x~+ , , .~ )  2(N--  1) 1 (5.8) 
N=0 p(1 --p) 

and therefore with (4.30) one recovers (5.4). We note that the argument in 
fact gives additional information: the probability that the two second-class 

822/73/5-6-2 



830 Derrida e t  al. 

particles are a distance r apart with exactly k first-class particles between 
them. In the infinite system this probability is 

k + l  kK/k / k  

6. A POSITIVE DENSITY OF SECOND-CLASS PARTICLES 

In this section we study the infinite-volume limit in the case in which 
the first- and second-class particles have positive densities Pl and P2, 
respectively. We begin with a finite system--a ring of N sites--and since we 
want to calculate the particle densities as seen from a second-class particle, 
we choose the frame in which site N is occupied by such a particle. One 
approach is to work in the canonical ensemble, with KI first-class and K2 
second-class particles, and then take the limit N, K1, K2 ~ ~ with 
K 1 / N ~  Pl and K 2 / N ~  P2. As in the previous sections, however, it is more 
convenient to work in the grand canonical ensemble for the sites 
1,..., N -  1. 

We therefore introduce three fugacities (two would be sufficient), x for 
the first-class particles, y for the second-class particles, and z for the holes, 
and define a matrix G as the obvious generalization of the matrix C 
introduced previously: 

G = xD + yA + zE (6.1) 

Then the densities de(N), ai(N), and ei(N) of first-class particles, second- 
class particles, and holes, respectively, are given by 

( I [ G i - I D G  N - i - l [ 1 }  
d~(N)=x  (11G N- '  [1) (6.2) 

( l l  G ~ 1AGN-~-1 11) 
a , ( N ) = y  ( l l  GN_~ i1) (6.3) 

and 

(11Gi - IEG N-e- I  I1> 
e i ( N ) = z  (11G N- '  I1> (6.4) 

In the Appendix we give a recursion relation (A.12) and from that an 
explicit formula [see (A.14)] for the matrix elements (11 G n l l ) ;  to com- 
plete the determination of the densities, we will express the numerators in 
(6.2)-(6.4) in terms of the known quantities (11 G n I1 ) and ( l l  C n l1 7. 
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First, it is simple to obtain the explicit form for the density of second- 
class particles: since A = [1 } { 1[, we have from (6.3) that 

{1 l G' 111}{lj G N-i l i ] }  
a,(N)=y <11G N-111} (6.5) 

To treat the density di (N)  of first-class particles we first note that, 
from (6.2) and the fact that O [1 } = [1} [see (3.3)], 

{1[  G N 2 I1) 
d N - l ( N ) = x  {11 a N - 1  jl} (6.6) 

Next we note a simple consequence of the matrix algebra (3.1)-(3.3): 

x ( D G  - GD) = x y ( D A  - A D )  + x z ( D E -  ED)  

= ( x y + x z ) A - x y A D = ( x +  y ) ( z +  y ) A - y A G  (6.7) 

Clearly (6.2) and (6.7) imply that for i >  1, 

di (N)  - d,+ I(N) = (6.8) 

( x + y ) ( z + y ) { l l  G i ' ]1}{1[ a N - i  211)--y(1 [ G i - 1  ] l ){ l l  G N - i - 1  [1~ 

{ll G N - 1  I1> 

which can be rewritten using the recursion (A.12) as 

d , (N)  - d,+ I(N)  = x z  
(11G' ' [ 1 } (1 [  C N- i  211} 

{ll G N 1ll} 

The formulas (6.6) and (6.9) determine all the di(N).  

The determination of the e , ( N )  is similar. First, 

{ l l  G u - 2  I1) 
e l ( N ) = z  

{ l l  G N - l  I1> 

Then, from 

z (EG - GE) = z x ( E D  - D E )  + z y ( E A  - A E )  

= - ( z x  + z y ) A  + z y E A  = - ( x  + y ) ( z  + y ) A  + y G A  

and (A.12) we find 

e i (N)  - el+ I (N)  = - x z  
{11 C i - 1  I1}{11 6 u ,-2 I1} 

{ll G N - I  I1} 

Equations (6.10) and (6.12) determine all the ei(N).  

(6.9) 

(6.10) 

(6.11) 

(6.12) 
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We now consider the infinite-volume limit of these densities. The 
large-n behavior of (1[ G~[1 ) for y2>  xz is determined in (A.16): 

From this we may determine the values of x, y, and z which in the large-N 
limit give densities Pl of first-class particles, P2 of second-class particles, 
and 1 - p ~ - P 2  of holes: 

x d x 
Pl = tim log(l[  G N = (6.14) 

y d y 2 _  xz 
PZ=u~lim N T l ~  (6.15) 

1 - - p l - p 2 =  lim z d GN = z (6.16) N_~o~ ~ l o g ( l l  I1) y + z  

It is clear from (6.15) that the assumption y2 >xz  leads to a consistent 
determination of x, y, and z, unique up to an overall factor; for y ".~ (xz) ~/2 

we recover Pl = x//x/(x//~ + ~/r~) as in the case (4.14) with a finite number 
of second-class particles. (For y2 < xz a calculation similar to that yielding 
(A.16) shows that ( l [  G" [1)_~ [ 1 - y / ( x z ) m ]  -2 ( l l  C n [1), so that the 
number of second-class particles in the infinite system is finite and diverges 
when y .~ (xz)l/2). 

We can now compute the infinite-volume limit of the densities di(N ), 
ai(N), and ei(N) at site i relative to the second-class particle; as in 
Section3, we define di=limf__,~d~(N) and d _ i = l i m N ~ d N _ i ( N ) ,  for 
i > 0, with similar definitions for a+i and e+~. We begin with a discussion of 
the situation to the left of the origin. From (6.6), (6.13), and (6.14) (6.15), 

xy =P~(Pl+Pz) (6.17) 
d ~ - ( y  + x ) ( y  + z) 

while the difference equation (6.9) yields 

~ ~ (y+x)(y+z)Y )n+l  d _ i = d _ l + x z  ~ (11 C" ~[1) 
n =  1 

= PI(Pl +P2) 
i--I n--1 1 - 1~ 

/ 

• p + l [ ( 1 - p ~ ) ( 1 - p l - p 2 ) ] "  P (6.18) 
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where we have used the asymptotic behavior (4.10) of {11 C ~ ]1) in the 
last step. Moreover, because the condition y 2 > x z  guarantees that the 
asymptotic growth of {1[ C " I 1 )  is slower than that of {1] G " ] I )  [com- 
pare (6.13) and (4.11)], the difference equation (6.12) for the ei implies that 
e ; = e  ~i+l)=e 1 for all i>0 .  This constant density is easily determined 
from e _ i = 1 - a _ 1 - d_ ~ ; since (6.5) and (6.13) imply that 

a_~ = yZ/ (y  + x ) ( y  + z) = P2 + P~(1 - Pl -- P2) 

using the value (6.17) for d ~  yields 

e i = e  1 = l - - a - l - - d - l = l - - p l - - P 2  (6.19) 

Finally, the density of second-class particles is determined simply from the 
above expressions for d ~  and e_i: 

a - i = l - e  i - d - i = P l + P z - d  i (6.20) 

We obtain in a very similar way expressions for the densities to the 
right of the second-class particle. From (6.10), 

e, = (1 - p,)(1 - p , - p 2 )  (6.21) 

and then from the difference equation (6.12), for all i > 0 ,  

e i=  ( 1 - p , ) ( 1 - p , - p 2 )  

x [p~(p~--~- p2)] p+I [(1 --pl)(1 - -01- -P2)]  n - p  (6.22) 

Finally, for all i >  0, from (6.9) (which implies d~= di+ ~), (6.21), and the 
fact that a~ = P2 + P~(1 - pl  - P2), 

di= p 1 (6.23) 

and 

a i=  1 - d i - e i =  1 - p l - e i  (6.24) 

In the remainder of this section we make several comments on these 
results; in the next we discuss their relation to shock profiles in a system 
consisting only of first-class particles. 

Notice from these formulas that for the measure in the infinite-volume 
limit, conditioned on the presence of a second-class particle at the origin, 
the density e i of holes to the left of the origin and the density di of first 
class particles to the right of the origin (where i > 0  in each case) are 
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constant. It is easy to extend these results and show that, under this condi- 
tioning, the holes to the left and particles to the right of the origin have 
Bernoulli distributions with densities 1 - P l -  P2 and Pl, respectively. We 
have no simple explanation for this extremely simple property of the 
invariant measure. 

Next we observe that, using (A.7), it can be shown from (6.18) that 

l i m  d _  i = P l  (6.25) 
[ ---~ o o  

and that the approach is exponential, since from the difference equation 
(6.9) and the asymptotic formulas (4.11) and (6.13) one has 

d _ i l - d _  i 

Similarly 

1 
,/--~ i3/~ [PI(P, + p2)(l - Pl)(I - p, - P2)] i/4 

2 

x { [ p , ( p ,  + p 2 ) ] ' / 2  + [ (1  - p1)(1  - p ,  - p 2 ) ]  1/2}2,+, (6.26) 

lira ei = 1 - Pl - P2 (6.27) 
i ~ o o  

with the same exponential approach. 
If one sets Pl = P and P2 = 0 in (6.26), then the difference m neighbor- 

ing densities reduces to (4.26) and the decay of the density to its asymptotic 
value is algebraic; conversely, it is interesting to notice that the only case 
in which the decay of d_i is not exponential is p2=0.  As P2 "~ 0, 

the characteristic length of the exponential decay is asymptotically 
4 p ( 1 - p ) p 2  2. On the other hand, according to the remark in the 
paragraph above, the density of first-class particles to the right of the origin 
here (di, with i >  0) is constant for all values of Pl, P2, and in particular in 
the Px = P, P2 = 0 limit; this is in apparent disagreement with the situation 
[see (4.21)] when there is only one second-class particle in the system. The 
resolution of this paradox is that the slow decay of the densities to their 
asymptotic values when P2 = 0 [see (6.26)] implies that even in this limit 
an infinite number of second-class particles remain in the system. These 
particles form a bound state, so that the second-class particle at the origin 
is surrounded by infinitely many others and sees a very different environ- 
ment from that seen by a single second-class particle in the presence of a 
density p of first-class particles. We remark that these second-class particles 
are distributed as in the systems with a finite number of second-class par- 
ticles discussed in Section 5: the distances between consecutive second-class 
particles are independent and the probability that such a distance has value 
r is p~o(r) [see (5.4)]. 
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Finally, by combining the explicit expressions above for d~ and ei we 
obtain 

d_i q- ai +di = 2p~ + P2 (6.28) 

for all i > O, in agreement with (2.2). 

7. M I C R O S C O P I C  SHAPES OF FRONTS 

As observed in Section 2, the results of the previous section allow us 
to determine the microscopic shape of the shock front between densities 
p -  = P l  and p+ = P l  + P2 in a system of first-class particles, as seen from 
the position of a single second-class particle which is introduced into the 
system to locate the shock front. To do so we define densities 6g for all i 4 = 0 
by 

d i if i < 0  (7.1) 
6i= di+ai if i > 0  

Thus 6~ is the density profile of a new species of particles, consisting of all 
first-class particles to the left of the origin and of all first- and second-class 
particles to the right of the origin. Consideration of the dynamics shows 
that in fact the particles of this new species, together with the distinguished 
second-class particle located at the origin, do behave as a system of first- 
class particles as seen from a single second-class particle (in the new system 
one ignores interchanges between particles of the new species, and ignores 
also the old second-class particles to the left of the origin). 

Since limi~ +oo di= p~ and l i m ~  +oo ai = P2, the densities 6~ satisfy 

lim ~5~ = p _  and lim 6~ = p + ( 7 . 2 )  

so that this is indeed a system with a shock between these two densities. 
The exact shock profile to the left of the origin follows from (6.18): for 
i>0 ,  

S-i= P- P + +,= p~o-~- Pn n -p 1 

x(p  p+)p+l [ - ( l _ p _ ) ( l _ p + ) ] , - p  (7.3) 

The shock profile to the right of the origin follows from (6.22), since 
6i = 1 - e i  for i > 0 :  
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6i=p+ +p ( l - p + )  

x ( p _ p + )  "+1 [ ( 1 - p _ ) ( l - p + ) ] n - P  (7.4) 

For example, we find 

6_1=p p+, ~ 2=-p p + + o _ p + ( 1 - O _ ) ( 1 - p +  ) (7.5) 

and so forth; for i large there is exponential convergence to p , 

[p p+(l--p_)(1--p+)] 1/4 
0--i--1--g--i-- 

2 x/~ i 3/2 

x{(p p + ) ~ / 2 + [ ( l _ p _ ) ( l _ p + ) ] m } 2 , - ,  (7.6) 

with characteristic length diverging as (p + - p _ )  2 when ( p + - p  ) N 0. 
The corresponding results for 6,, i > 0, may be obtained from the symmetry 
6~+6 i = p + + p _ .  

In the limit p~ = p, P2 = 0 ,  i.e., p_ = p+ = p, these results recover the 
"shock" profile found in Section 4. But, as discused at the end of Section 6, 
the makeup of the density profiles in the two situations is quite different. 
In the P2 "~ 0 limit, the excess density ahead of the origin is contributed by 
second-class particles; the density of first-class particles is constant and 
equal to p in this region. Similarly, behind the origin the density of holes 
is constant and equal to 1 -  p, and the lowered density of first-class par- 
ticles reflects the presence of second-class particles. The density profile 6~ 
found here coincides with the profile d~ of Section 4, however, because a 
second-class particle interacts with the second-class particles ahead of it as 
if they were first-class particles and with those behind it as if they were 
holes. 

8. C O N C L U S I O N  

In this paper we have found an exact solution of the two-species, 
totally asymmetric simple exclusion process, first on a ring and then in the 
infinite-volume limit on the lattice Y. From this solution we have calculated 
exact shock profiles in a one-species TASEP as seen from the location of 
a single second-class particle, both for the true shock between different 
asymptotic densities and for the artificial "shock" seen by the second-class 
particle in a uniform density of first-class particles. We have also observed 
that two second-class particles in a uniform density of first-class particles 
form a weakly bound state. 
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The exact solution which we have introduced in a ring of sites can be 
extended in two ways to models with other jump rates. First, we may relax 
the requirement that the process be totally asymmetric and consider the 
case in which part ic les--both first and second class-- jump to the right with 
probability p > 1/2 and to the left with probability q = 1 - p .  In this case 
we may find the steady state with the aid of matrices D and E which 
satisfy(19) 

p D E -  qED = (p - q)(D + E) (8.1) 

A = D E - E D  will then satisfy 

pDA - qAD = (p - q )A  and p A E -  qEA = (p - q )A  (8.2) 

If we assume that trace A is finite, we may again take the weight w~c(v) of 
a configuration z = (zl ..... ~u) to be 

wK(~l ,..., ZN) = t race[X1---  XN] (8.3) 

where X i = E  if v~--0, X ~ = D  if r i =  1, and X ~ = A  if r i = 2 .  By a slight 
generalization of the proof  given in Section 3 for the p = 1 case, we may 
then show that the w K are the weights of a steady state for the dynamics. 
Equations (8.1) and (8.2) may be realized by the choice (19) 

(i ~176 (i~176176 D =  0 1 ~3 , E =  cr 2 1 0 (8.4) 

0 0 1 0 ~3 1 

where ~ satisfies ~ = 1 - (q/p)i. The matrix A = D E -  ED is then given by 

1 o o o ...) 
~2 - ~1 0 0 

A = [ 0  0 ~ 3 - ~ 2  0 (8.5) 

0 0 ~4 - o~s 

" . ,  ' ,  

Because we have assumed that q < p, the matrix elements of A decrease 
exponentially and trace A = limi_~ o~ ai = 1. 

A different extension is to the case in which the asymmetry is still 
to ta l - -only  jumps to the right are permi t ted--but  the three types of 
jumps, 10--*01,  1 2 ~ 2 1 ,  and 2 0 ~ 0 2 ,  occur at different rates, say 
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1, r, and s, respectively. Now the invariant weights are given by (8.3) if the 
matrices D, E, and A satisfy 

D E  = (D + E),  r D A  = A,  and s A E  = A (8.6) 

The proof is as in Section 3. To satisfy (8.6) we may, as in the case r = s = 1 
considered in the body of the paper, take A to be a projection operator, (19~ 
but now A = I V) ( W], with ] V) a right eigenveetor of D and ( WI a left 
eigenvector of E: D ] V) = r -  ] I V) and ( WI E = s 1 ( Wt. Several explicit 
realizations of such D, E, IV), and < WI are given in ref. 19. 

x + z  

z x + z  

C =  0 z 

0 0 

A P P E N D I X  

In this Appendix we collect various formulas involving the matrix 
elements of powers of the fundamental matrices C and G used in computa- 
tions in the grand canonical ensembles. 

We begin with the calculation of ( I I  Cn[1 ). The matrix C = x D  + z E  

defined in (4.5) is a tridiagonal matrix in the representation defined in 
(3.11): 

x 0 0 

x 0 

(a.1) X "*t X - l - z  

x + z  Z 
We may think of C as the unnormalized transition matrix of a one-dimen- 
sional walk in which the walker can at each step go to the right with a 
weight x, go to the left with a weight z, or remain at its present position 
with a weight x + z; because the matrix is semi-infinite, the walk cannot go 
to the left of site 1. The quantity (1] C n [ 1 > is thus just the total weight of 
all the walks of n steps starting and ending at 1. But the number of such 
walks which take a total o fp  steps to the right (and also, of course, p steps 
to the left) is 

n 2p 

where the first factor is the number of ways to choose 2p nonzero steps 
among the n steps and the second factor is the number of walks of 2p steps, 
with p steps each to the right and left, which go from 1 to 1 without visiting 
0; this number can be computed by the method of images. Thus 

p = 0  
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Equation (A.3) may be rewritten in a convenient alternate form using 
the identity 

b a 
+ c)  (A.4) 

which is easily verified by induction on a from the fundamental identity 

m / -  \ m /  \m- -  
as follows: 

In/2] 

(11 c" 11)= Y~ 
p=O 

n (x+z)" 2~(xz)~_~4 ~ 
2p 

= E E n n 2p x~+pz,_lk+pl 1 
p=o g=o 2p p + l  

q=oq! (n+ 1 -q ) !  p p+  1 

From this we may obtain the large-n behavior of (1[ Cnll  ), for example, 
by calculating the contribution of the values of q which dominate the sums: 

( l [  C n [l  > "~ ( ~ _ ~ ) 2 n + 3  (A.6) 
2 ~ n3/2(xz)3/4 

It will also be useful to have an expression for the generating function 
of the (1[ C" [1). From (A.3), for [21 ~< ( x / ~ + x / ~ )  -2, 

) f ( l [  C" I1) = ~ - 2 p  p! ( p +  1)! 
n=O n=O p=O /~/ 

(2p)! = ~ ~ ( 2 p + q  (X+Z)q)Sp+q(XZ)Pp!(p+|) ! 
p=O q=O \ q 

= ~ [1-;~(x+z)] -2~ l(;~Sxz)P 
(2p)~ 

p=o p! ( p +  1)! 

1 - 2(x + z) - { [-1 - 2(x + z)] 2 - 422xz } 1/2 
- 222x z (A.7) 

where we have used the standard Taylor series 

1 - (1 - 4u)1 /2  ~~ ( 2 p ) !  

2u =p~op!  ( p +  1)! 
u p (A.8) 
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The formula (A.7) simplifies at the radius of convergence: when 
- 2  , 

(1[ C. ii>(.~f~ + x / ~ ) 2 n  _ (,./~ + x/-~) 2 1 (A.9) 
o=o ~ p( l -p)  

where in the last step we have taken p = ~ / ( x / x  + x/-z), as in Sections 3 
and 4. 

We finally turn to the discussion of the matrix elements of G = xD + 
yA +zE  defined in (6.1). It is convenient to begin with the calculation of 
the generating function of the (1[ G n I1). By writing G = y A + C =  
Y [ 1 ) ( l l  + C, we see that for 2 sufficiently small, 

2"(11 G" 11)= (2y) k ~."(ll C" I1) (A.10) 
n = O  k = 0  n 0 

= ~n(ll  C ~ I1) 1- ,~y 2n(ll  C n I1) (A.11) 
n = O  n = O  

We now claim that the (11 G~[1 ) satisfy the recursion 

(1[ G"I1)-  
(y + x)(y + z) 

Y 
( l l G ' - ' l l ) - X Z ( l l e n - ' j l >  (A.12) 

Y 

To verify this claim, we note that if (A.12) is satisfied, then 

2 n ( l l G n l l ) =  I__(Y+x)(Y+Z)  2 
n = 0  Y 

Y n = O  

(A.13) 

and it is easy to see from the explicit formula (A.7) for the generating 
function of the ( l l  C n I1) that (A.11) and (A.13) are identical. The 
recursion (A.12) together with the initial case (1I G ~  1 leads to 

(11G n I 1 ) = [ ( Y + x ) ( Y + z ) l n ~ l  xz 
k AL y (y + x)(y + z) 

)q ] n 1 y C q 
x (11 I1) 

=o (Y + x)(y + z) 
(A.14) 

so that the explicit expression for the ( l l  G n [1 ) may be obtained with the 
aid of either of the expressions (A.3), (A.5) for ( l l  C q 11). Finally, we 
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may find the asymptotic form of <1t Gnll> directly from (A.14). We 
consider only the case y2>xz needed in Section6; then taking 
;t = y/[(y + x)(y + z)] in the generating function (A.7), we have 

~ ( y )q (y+x)(y+z) 
q~O (y+x)(y+z) <ll C q I 1 >  - y2 (A.15) 

so that (A.14) yields 

( < I l G ' I I > _  ~ 1 yRj L Y (A.16) 
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NOTE ADDED IN PROOF 

It can be shown (see E. Speer, The two species totally asymmetric 
simple exclusion process, to appear in Micro, Meso, and Macroscopic 
Approaches in Physics, ed. M. Fannes, C. Maes, and A. Verbeure, Plenum) 
that the translation invariant steady state of Section 6 has exponential 
decay of correlations, is non-Gibbsian, and is the unique extremal state 
with densities Pl, /92; the full proof of the Bernoulli property of first class 
particles to the right of a second class particle is also given in this article. 
We thank E. Andjel for pointing out the importance of some of these 
questions, and P. Ferrari for helpful comments on the manuscript. 

REFERENCES 

1. H. Spohn, Large-Scale Dynamics of Interacting Particles (Springer-Verlag, New York, 
1991); A. DeMasi and E. Presutti, Mathematical Methods for Hydrodynamic Limits 
(Springer-Verlag, New York, 1991); and references therein. 

2. J. Lebowitz, E. Presutti, and H. Spohn, Microscopic models of hydrodynamic behavior, 
J. Stat. Phys. 51:841-862 (1988). 

3. B. Schmittman, Critical behavior of the driven diffusive lattice gas, Int. J. Mod. Phys. B 
4:2269-2306 (1990). 

4. P. Garrido, J. Lebowitz, C. Maes, and H. Spohn, Long-range correlations for conservative 
dynamics, Phys. Rev. A 42:1954-1968 (1990). 

5. R. Bhagavatula, G. Grinstein, Y. He, and C. Jayaprakash, Algebraic correlations in 
conserving chaotic systems, Phys. Rev. Len. 69:3483 3486 (1992). 



842 Derrida et  al. 

6. T. M. Liggett, Interacting Particle Systems (Springer-Verlag, New York, 1985). See also 
T. M. Liggett, Ergodic theorems for the asymmetric simple exclusion process, Trans. 
Amer. Math. Soc. 213, 237-261 (1976), and T. M. Liggett, Ergodic theorems for the asym- 
metric simple exclusion process II, Ann. Prob. 5, 795-801 (1977). 

7. H. Rost, Nonequilibrium behavior of many particle process: Density profiles and local 
equilibria, Z. Wahrseh. Verw. Gebiete 58:41-53 (1981). 

8. A. Benassi and J. P. Fouque, Hydrodynamic limit for the asymmetric simple exclusion 
process, Ann. Prob. 15:546-560, and erratum. (1987). 

9. E. D. Andjel and M. E. Vares, Hydrodynamical equations for attractive particle systems 
on ~, J. Stat. Phys. 47:265-288 (1987). 

10. D. Wick, A dynamical phase transition in an infinite particle system, J. Stat. Phys. 
38:1015-1025 (1985). 

I1. P. Ferrari, The simple exclusion process as seen from a tagged particle, Ann. Prob. 
14:1277-1290 (1986). 

12. E. D. Andjel, M. Bramson, and T. M. Liggett, Shocks in the asymmetric exclusion 
process, Prob. Theory Related Fields 78:231-247 (1988). 

13. A. De Masi, C. Kipnis, E. Presutti, and E. Saada, Microscopic structure at the shock in 
the asymmetric simple exclusion, Stoch. Stoch. Rep. 27:151-165 (1989). 

14. P. Ferrari, C. Kipnis, and E. Saada, Microscopic structure of traveling waves in the 
asymmetric simple exclusion, Ann. Prob. 19:226-244 (1991). 

15. P. Ferrari, Shock fluctuations in asymmetric simple exclusion, Prob. Theory Related Fields 
91:81-101 (1992). See also P. A. Ferrari and L. R. G. Fontes, Shock fluctuations in-the 
asymmetric simple exclusion process (1993), to appear in Prob. Theory Related Fields. 

16. C. Boldrighini, G. Cosimi, S. Frigio, and M. G. Nufies, Computer simulation of shock 
waves in the completely asymmetric simple exclusion process, J. Stat. Phys. 55:611-623 
(1989). 

17. S. A. Janowsky and J. L. Lebowitz, Finite size effects and shock fluctuations in the 
asymmetric simple exclusion process, Phys. Rev. A 45:618-625 (1992). 

18. B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer, Microscopic shock profiles: 
Exact solution of a nonequilibrium system, Europhys. Lett. 22 (1993). 

19. B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, An exact solution of a 1D 
asymmetric exclusion model using a matrix formulation, J. Phys. A 26:1493-15t7 (1993). 

20. B. Derrida, E. Domany, and D. Mukamel, An exact solution of a one dimensional 
asymmetric exclusion model with open boundaries, J. Stat. Phys. 69:667-687 (1992). 


